Exercise 16

Convert each of the following Fredholm integral equation in 9-16 to an equivalent BVP:

$$
u(x)=e^{x}+1+\int_{0}^{1} K(x, t) u(t) d t, K(x, t)= \begin{cases}2 t, & \text { for } 0 \leq t \leq x \\ 2 x, & \text { for } x \leq t \leq 1\end{cases}
$$

Solution

Substitute the given kernel $K(x, t)$ into the integral.

$$
\begin{equation*}
u(x)=e^{x}+1+\int_{0}^{x} 2 t u(t) d t+\int_{x}^{1} 2 x u(t) d t \tag{1}
\end{equation*}
$$

Differentiate both sides with respect to x.

$$
u^{\prime}(x)=e^{x}+\frac{d}{d x} \int_{0}^{x} 2 t u(t) d t+\frac{d}{d x} \int_{x}^{1} 2 x u(t) d t
$$

Apply the Leibnitz rule to differentiate the second integral.

$$
\begin{align*}
& =e^{x}+2 x u(x)+\int_{x}^{1} \frac{\partial}{\partial x} 2 x u(t) d t+2 x u(1) \cdot 0-2 x u(x) \cdot 1 \\
& =e^{x}+\int_{x}^{1} 2 u(t) d t \\
& =e^{x}-2 \int_{1}^{x} u(t) d t \tag{2}
\end{align*}
$$

Differentiate both sides with respect to x once more.

$$
\begin{aligned}
u^{\prime \prime}(x) & =e^{x}-2 \frac{d}{d x} \int_{1}^{x} u(t) d t \\
& =e^{x}-2 u(x)
\end{aligned}
$$

The boundary conditions are found by setting $x=0$ and $x=1$ in equations (1) and (2), respectively.

$$
\begin{aligned}
u(0) & =e^{0}+1+\int_{0}^{0} 2 t u(t) d t+\int_{0}^{1} 2(0) u(t) d t=2 \\
u^{\prime}(1) & =e^{1}-2 \int_{1}^{1} u(t) d t=e
\end{aligned}
$$

Therefore, the equivalent BVP is

$$
u^{\prime \prime}+2 u=e^{x}, u(0)=2, u^{\prime}(1)=e
$$

